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Gaussian processes

There is hope N =N; +Ny+Ng+---+ Np
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The problem

Complexity of probabilistic learning is
dominated by the of
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The problem

Complexity of probabilistic learning is
dominated by the of

Snxn — O(N°)

Gaussian processes

There is hope N =N; +Ny+Ng+---+ Np

4000 < (1000)° Ny =2

complexity given subsets is much smaller
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The problem

Complexity of probabilistic learning is typically
dominated by the number of data points

Snxn — O(N°)

Gaussian processes

There 1s hope N =N;+Ny+Ng+---+
can 1 do this with

ML models?

4000 < (1000)*

complexity given subsets is much smaller
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N = 100 observations

2 learning/inference
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fet’s think in

Gaussian Processes
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The idea
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GPa

GPp

GPc
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The idea (with GPs)

fet’s think in

Gaussian Processes

Ensemble
YW e m\m‘\‘m

B observed

B unobserved
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Summary index

0 Gaussian processes (in a nutshell)

gaussian likelihoods
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Likelihood model
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D = {Xi7Yi ffil

Classical GP model
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l

\‘ p=f(x;)

non-linear function
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D = {Xi7Yi ffil

Classical GP model

Yi NN(Yi\f(Xi)aU) f~GP0O,k(,))

likelihood prior
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(Gaussian Processes |

D = {Xi7Yi ffil

Classical GP model

Yi NN(Yi\f(Xi)aU) ngP(O»k‘('»'))
l

kernel / covariance functions

2

likelihood k(xi,x;) = o exp ( L 2_£2X 2 )
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(Gaussian Processes |

D = {Xi7Yi ffil

Classical GP model

Yi NN(Yi\f(Xi)aU) ngP(O»k‘('»'))
l

. W kernel / covariance functions
_2 W2
N k(i) = o exp (- 220
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Non-Gaussian Likelihoods

input

D = {Xi7Yi ffil

types of output

c
c

c R

0, 1]

R,

c{0,1,..., K}
c{0,1}
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Non-Gaussian Likelihoods

D = {Xi7Yi ffil

Modern GP models
yi ~ p(y:|0(x;)) 0(x;) = o(f(x:)) f~GP0, k()
X / \ /
\\/ v

non-linear mappings
(linking functions)




Non-Gaussian Likelihoods

D = {Xia yz}f‘j\il
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Non-Gaussian Likelihoods
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Non-Gaussian Likelihoods

D = {Xia yz}f‘j\il

Modern GP models
yi ~ p(y:|0(x;)) 0(x;) = o(f(x:)) f~GP0, k()
X / \ /
\\/ v

Binary GP classification

)

\/

1
1+ exp f(x;)

f~GP@O,k(,-))




Non-Gaussian Likelihoods ; * o

L N ( 0.2 /\j
D = {x4,¥i}iz1 12 N\

Binary Output

Modern GP models
yi ~ p(yil0(x;)) 0(x;) = o(f(xi)) f~GP0,k(-,-))
X / \ /

N N

Binary GP classification

1
yi ~ Ber <Yi"0 - 1+ exp f(xz)> f ~ gP(()? k(? ))
\/




Non-Gaussian Likelihoods

Three important contributions

M. Lazaro-Gredilla and M. K. Titsias

Variational Heteroscedastic Gaussian Process Regression y ~ N(Y“L — f(X), g = 69(X>)
In International Conference in Machine Learning (ICML), 2011

J. Hensman, A. G. de G. Matthews and Z. Ghahramani
Scalable Variational Gaussian Process Classification y ~ Ber(y’p — ¢(f(X)))
In Artificial Intelligence and Statistics (AISTATS), 2015

A. D. Saul, J. Hensman, A. Vehtari and N. D. Lawrence
Chained Gaussian Processes y ~ POiSSOH(Y‘)\ — exp(f(X) —+ g(X)))
In Artificial Intelligence and Statistics (AISTATS), 2016
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Complexity problem

Inverting [mge matrices
is the on.[)/ fﬁing
that 1 bate from GPs

D ={x;,y;
why?

p(fID) \x / [ Pl U xo)df (x)

marginal likelihood integral

posterior inference of the underlying GP function



Sparse Gaussian Processes I

D = {Xi7Yi ffil

Modern GP model

Yi NN(Yi\f(Xi)aU) f~GP0O,k(,))

seems equal but..



Sparse Gaussian Processes I

D = {Xi7Yi ffil

1s power!



Sparse Gaussian Processes I

D = {Xi7Yi ffil

Yi X </ X
XX XX
) N~ P +— X R}
71 72 X3
| u= f(z)
Notation
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Sparse Gaussian Processes I

/ D (y ‘ f) P ( f ‘ 11) P ( 11) dfdu marginal likelihood integral

\.

p(flu) = N (fI K Kgqu, Kg — Keo Ky K ip)
Gaussian conditional \ /
O(NM?)
M<K N



Sparse Gaussian Processes I

Variational inference

/ p(y|f)p(flu)p(u)dfdu

\ q(f,u) %P(f»um%//

p(flu) = N(fKruKyau, K — KKy Kye)
Gaussian conditional \ /
O(NM?)
M < N




Sparse Gaussian Processes I

Inference

q(f,u) =~ p(f,u|D)
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Modular Gaussian Processes

coming back to the metaphor

My ={¢, Y., Z}1} “module”

0 j. — variational parameters
tbk — kernel hyperparameters
Uk, £}, — inducing points



Modular Gaussian Processes

doing these learning processes independently

My = {43171#1721} MQ — {¢27¢27 ZQ} MB — {¢37¢37 ZB}

we obtain different objects with parameters
where data is no longer needed



Modular Gaussian Processes

doing these learning processes independently

o, PR 2

e SESNEL

Ml — {¢1>¢1721} MQ — {¢27¢27 ZZ} M3 — {¢37¢37 Z3}

module 1 module 2 module 3

meta-module

meta-GP M* — {¢*7¢*7Z*}



Modular Gaussian Processes

doing these learning processes independently

Ml — {¢17¢17zl} MQ — {¢27¢27 ZZ} M3 — {¢3777b37 Z3}

module 1 module 2 module 3

l

M, = {(p*, (LA *} Qb* — new variational parameters

¢* — new Kkernel hyperparameters

meta-module
meta-GP

WUy, £« — new inducing points



Modular Gaussian Processes

doing these learning processes independently

P

-

TR

Ml — {¢1>¢1721} MQ — {¢27¢27 ZZ} M3 — {¢37¢37 Z3}

module 1 module 2

meta-module B B
meta-GP M* — {¢*7¢*7 Z*} z*

Uy, L —
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Factorisable (marginal) likelihood

data divided in K subsets

D:{mi,yi ,‘Z\;l D:{Dl,DQ,...,DK’}

augmentation + large-dimensional integrals

logp(y) = logp(yY1,¥Ya,-- -, Yg) = log/p(y, f)f+

conditioning on new inducing points

log p(y) = log / / D(Frtu. |10 y\f+)qEZ ;df#u*du*

p(us)
> IE:q(u*) Ep(f+;éu* |u*)[logp(y|f+)] + log q(uy)




Factorisable (marginal) likelihood

first step — data divided in K subsets
D:{:L'Z-,yi ,fil D:{Dl,pg,...,DK’}

second step — augmentation + large-dimer~ agrals

the exfectation seems to be

log p(y) — logp(yl, Yo, ... 7yK) — easily foctorisalle

third step — conditioning on new inducing points

0 5() =108 [ [ ()0 a0l £1) 23 0 .

p(u.)

> IE:q(u*) Ep(f+;éu* |u*)[logp(y|f+)] + log q(uy)
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gaussian likelihoods
non-gaussian likelihoods

sparse approximations

Modular Gaussian processes

factorisable (marginal) likelihoods

Bayesian likelihood approximation



Bayesian likelihood approximation

Ep(fysu, lu.) 108 P(Y]f+)] some manipulations are in order
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Bayesian likelihood approximation

Ep(f+7fu* |2y ) [log p(y!f+)]

log p(y|f+) =logp(y1,Yas - Yr|f+) expanding the wrt

=log | [ p(wslf+) applying (CD)
k=1

K
Z log p(yx|f+) x observations are still there!
k=1



Bayesian likelihood approximation

if posterior = prior x (ikelihood

(unnormalized)

\ then [iL.elibood = posterior/prior
Ep(f+7fu* |u*)[logp(y!f+)] :

(unnormalized)

log p(y|f+) = logp(Y1, Yo, - - Yr | f+) expanding the likelihood wrt modules
K
=log | [ p(wslf+) applying conditional indep. (CI)
k=1

K K g (F+) %
— | ~ ™
321 og (Y| f+) 321 log kak )



Bayesian likelihood approximation

7

Qk(f+)]
pr(f+)

Ep(frpu lun) 108 (Y1 f1)] ZEM# ) llong

no more



Bayesian likelihood approximation

expectation integrals got reduced

K K
p(f1 s lua) 108 D(Y] f1)] ];:1: P(f+ru |us) [108 kpk(f+) ]; p(unlu-) | 508 “ pi (uy)

thanks to Gaussian marginal properties
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0 Gaussian processes (in a nutshell)

o

gaussian likelihoods
non-gaussian likelihoods

sparse approximations

Modular Gaussian processes

factorisable (marginal) likelihoods
Bayesian likelihood approximation

module-driven lower bounds



Module-driven bound

M1:{¢1,¢1,Z1} M22{¢27¢2722} M3:{¢37¢37Z3} MK:{¢K7¢K7ZK}

A bound without data!

Le = Egouy) 10g ar(ur) — log p(ur)] — KL [q(us)|[p(u.)]

new complexity: = o(() " M) M?)
k



Summary index

0 Gaussian processes (in a nutshell)

o

gaussian likelihoods
non-gaussian likelihoods

sparse approximations

Modular Gaussian processes

factorisable (marginal) likelihoods
Bayesian likelihood approximation
module-driven lower bounds

results



Results / parallel inference

Distributed task (k = 1) Distributed task (k =3) Distributed task (k = 5)
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Regression w. 5 independent tasks



Results / banana classification

Banana GP Ensemble
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Classification in R?



Results / image recognition

To input

To input

MNIST Recyclable GP

-2

~

MNIST GP Ensemble
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Recyclable GP

input

0.0 05 1.0 -1.0-05 00 05 1.0

r1 input

—1.0

—0.5 0.0 0.5

r1 input

1.0

-1.0 -05 0.0 05 1.0

xr1 input

MNIST GP Ensemble

r1 input

Recognition of {0, 1} digits from pieces
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Results / meta-models from meta-models (1l

Layer O 50 X N = 200 10K
META-GP
Layer 1 1 x 10 100K
META-GP
Layer 2 1 X 10 1M
META-GP

META-GP



Results / heterogeneous

51.69 095K £
490K £
51.61 -
1241KL
118K £
_51.531
&
[eb}
'g - - L L580K £
= ) classification 1
= ] ‘;
= 51.45 o Ml S
51.37 1
classification
51.29 . . . .
20.51 -0.34 -0.17 -0.0 0.16 0.33

Longitude (z2)

we can also mix binary + real-valued data



Machine Learning + Life Sciences

Why is this project interesting for life sciences?




Machine Learning + Life Sciences

Why is this project interesting for life sciences?

- personalized models for patients as modules

- population studies without data-centralisation
- post-learning correlation analysis

- transfer learning

- parallel inference and computational cost
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Find the paper & code!

RECYCLABLE GAUSSIAN PROCESSES

Pablo Moreno-Muifioz
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Universidad Carlos III de Madrid, Spain
pmoreno@tsc.uc3m.es

Antonio Artés-Rodriguez
Dept. of Signal Theory and Communications
Universidad Carlos III de Madrid, Spain
antonio@tsc.uc3m.es

O PyTorch

Recyclable Gaussian Processes

Mauricio A. Alvarez
Dept. of Computer Science
University of Sheffield, UK
mauricio.alvarez@sheffield.ac.uk
This repository contains the Pytorch implementation of Recyclable Gaussian Processes. We provide a detailed code

for single-output GP regression and GP classification with both synthetic and real-world data.

Please, if you use this code, cite the following preprint: ABSTRACT

We present a new framework for recycling independent variational approximations to Gaussian

@article{MorenoArtesAlvarez20,
title = {Recyclable Gaussian Processes},
author = {Moreno-Mu\~noz, Pablo and Art\'es-Rodr\'iguez, Antonio and \'Alvarez, Mauricio A},
journal = {arXiv preprint arXiv:2010.02554},
year = {2020}

processes. The main contribution is the construction of variational ensembles given a dictionary of
fitted Gaussian processes without revisiting any subset of observations. Our framework allows for
regression, classification and heterogeneous tasks, i.e. mix of continuous and discrete variables over
the same input domain. We exploit infinite-dimensional integral operators based on the Kullback-
Leibler divergence between stochastic processes to re-combine arbitrary amounts of variational

3 sparse approximations with different complexity, likelihood model and location of the pseudo-inputs.
Extensive results illustrate the usability of our framework in large-scale distributed experiments, also
compared with the exact inference models in the literature.

Ensemble of 5 recyclable GPs. .
1 Introduction

One of the most desirable properties for any modern machine learning method GPa 9P GP
is the handling of very large datasets. Since this goal has been progressively
achieved in the literature with scalable models, much attention is now paid
to the notion of efficiency. For instance, in the way of accessing data. The
fundamental assumption used to be that samples can be revisited without

restrictions a priori. In practice, we encounter cases where the massive 97»
storage or data centralisation is not possible anymore for preserving the
privacy of individuals, e.g. health and behavioral data. The mere limitation of

data availability forces learning algorithms to derive new capabilities, such as Ensemble

i) distributing the data for federated learning (Smith et al., 2017), ii) observe A o~
streaming samples for continual learning (Goodfellow et al., 2014) and iii) QN
limiting data exchange for private-owned models (Peterson et al., 2019).

Ensemble GP Model - (tasks=5)

Output, y

. . . . .. mmm unobserved  mmmm observed
A common theme in the previous approaches is the idea of model memorising

and recycling, i.e. using the already fitted parameters in another problem or Figure 1: Recyclable GPs (4, B, C and
joining it with others for an additional global task without revisiting any data. D) are re-combined without accessing
If we look to the functional view of this idea, uncertainty is still much harder t© the subsets of observations.

to be repurposed than parameters. This is the point where Gaussian process

(GP) models (Rasmussen and Williams, 2006) play their role.

In this paper, we investigate a general framework for recycling distributed variational sparse approximations to GPs,
illustrated in Figure 1. Based on the properties of the Kullback-Leibler divergence between stochastic processes
(Matthews et al., 2016) and Bayesian inference, our method ensembles an arbitrary amount of variational GP models
with different complexity, likelihood and location of pseudo-inputs, without revisiting any data.

—20 1 XKoo X o )Xo X )Xo Ko Ko Ko o e D6 DE o3 026 oD X o X o) e X o X0 )Xo Ko Ko Xeo Ko X X D o) o> o€ o) o> o X0 X

.
0 1 2 3 1 5 6
Input, =

RecyclableGP GitHub repo
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The (very) end
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